An operator preserving inequalities between polynomials

NISAR A. RATHER
Kashmir University
P.G. Department of Mathematics
Hazratbal-190006, Srinagar
INDIA
dr.narather@gmail.com

MUSHTAQ A. SHAH
Kashmir University
P.G. Department of Mathematics
Hazratbal-190006, Srinagar
INDIA
mushtaqa022@gmail.com

Abstract: For the B-operator $B[P(z)]$ where $P(z)$ is a polynomial of degree n, a problem has been considered of investigating the dependence of $|B[P(R z)]-\alpha B[P(r z)]|$ on the maximum modulus of $P(z)$ on $|z|=1$ for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ in order to establish some new operator preserving inequalities between polynomials.

Key-Words: Polynomials, B-operator, Inequalities in the complex domain.

1 Introduction

Let $P_{n}(z)$ denote the space of all complex polynomials of degree n. If $P \in P_{n}$, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq n \max _{|z|=1}|P(z)| \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \leq R^{n} \max _{|z|=1}|P(z)| \tag{2}
\end{equation*}
$$

Inequality (1) is an immediate consequence of S. Bernstein's Theorem (see $[11,16]$) on the derivative of a trigonometric polynomial. Inequality (2) is a simple deduction from the maximum modulus principle (see [11] or [13]). If we restrict ourselves to the class of polynomials $P \in P_{n}$ having no zero in $|z|<1$, then inequalities (1) and (2) can be respectively replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R>1}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)| . \tag{4}
\end{equation*}
$$

Inequality (3) was conjectured by P. Erdös and later verified by P.D.Lax [9] (see also [2]). Ankeny and Rivilin [1] used (3) to prove inequality (4). As a compact generalization of inequalities (1) and (2), Aziz and Rather [7] have shown that, if $P \in P_{n}$, then for every real or complex α with $|\alpha| \leq 1, R>1$ and $|z| \geq 1$,

$$
\begin{equation*}
|P(R z)-\alpha P(z)| \leq\left(R^{n}-1\right)|z|^{n} \max _{|z|=1}|P(z)| \tag{5}
\end{equation*}
$$

The result is sharp and equality in (5) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$

As a corresponding compact generalization of inequalities (3) and (4), they [7] have also shown that if $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R>1$ and $|z| \geq 1$,

$$
\begin{align*}
& |P(R z)-\alpha P(z)| \\
& \leq \frac{\left|R^{n}-\alpha\right||z|^{n}+|1-\alpha|}{2} \max _{|z|=1}|P(z)| \tag{6}
\end{align*}
$$

Equality in (6) holds for $P(z)=a z^{n}+b$, and $|a|=$ $|b|=1$.

Inequalities of the type (3)and (4) were further generalized among others by jain [8], Aziz and Dawood [3], Aziz and Rather [4] and extended to L_{p} norm by Aziz and Rather [5,6].

Consider a class B_{n} of operator B that carries polynomial $P \in P_{n}$ into

$$
\begin{align*}
B[P(z)]=\lambda_{0} P(z) & +\lambda_{1}\left(\frac{n z}{2}\right) \frac{P^{\prime}(z)}{1!} \\
& +\lambda_{2}\left(\frac{n z}{2}\right)^{2} \frac{P^{\prime \prime}(z)}{2!} \tag{7}
\end{align*}
$$

where λ_{0}, λ_{1} and λ_{2} are real or complex numbers such that all the zeros of

$$
\begin{equation*}
u(z)=\lambda_{0}+\lambda_{1} C(n, 1) z+\lambda_{2} C(n, 2) z^{2} \tag{8}
\end{equation*}
$$

lie in half the plane

$$
\begin{equation*}
|z| \leq|z-n / 2| \tag{9}
\end{equation*}
$$

Note that for $0 \leq r \leq n$,

$$
C(n, r)=n!/ r!(n-r)!
$$

It was proposed by Q.I. Rahman to study inequalities concerning the maximum modulus of $B[P](z)$ for $P \in P_{n}$. As an attempt to this, Q.I.Rahman [14] (see also $[15,16]$) extended inequalities (1), (2), (3) and (4) to the class of operators $B \in B_{n}$ by showing that that if $P \in P_{n}$, then

$$
|P(z)| \leq \max _{|z|=1}|P(z)| \text { for }|z|=1
$$

implies

$$
\begin{equation*}
|B[P](z)| \leq\left|B\left[z^{n}\right]\right| \max _{|z|=1}|P(z)| \text { for }|z| \geq 1 \tag{10}
\end{equation*}
$$

and if $P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
|B[P](z)| \leq \frac{\left|B\left[z^{n}\right]\right|+\left|\lambda_{0}\right|}{2} \max _{|z|=1}|P(z)| \tag{11}
\end{equation*}
$$

for $|z| \geq 1$.
In this paper an attempt has been made to investigate the dependence of $|B[P(R z)]-\alpha B[P(r z)]|$ on the maximum modulus of $P(z)$ on $|z|=1$ for every real or complex number α with $|\alpha| \leq 1, R>$ $r \geq 1$ and develop a unified method for arriving at various results simultaneously. In this direction, we first present the following interesting result which is a compact generalization of the inequalities (1), (2), (5) and (10).

Theorem 1 If $P \in P_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and for $|z| \geq 1$,

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| \max _{|z|=1}|P(z)| \tag{12}
\end{align*}
$$

where $B \in B_{n}$. The result is best possible and equality in (12) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

Substituting for $B[P](z)$, one gets from (12) for every real or complex α with $|\alpha| \leq 1, R>r \geq 1$ and for $|z| \geq 1$,

$$
\leq \left\lvert\, \begin{align*}
& \left.\sum_{j=0}^{2} \lambda_{j}\left(\frac{n z}{2}\right)^{j} \frac{\left(P^{(j)}(R z)-\alpha P^{(j)}(r z)\right)}{j!} \right\rvert\, \\
& \left|R^{n}-\alpha r^{n}\right||z|^{n} \times \\
& \left|\sum_{j=0}^{2} \lambda_{j}\left(\frac{n}{2}\right)^{j} C(n, j)\right| \max _{|z|=1}|P(z)| \tag{13}
\end{align*}\right.
$$

where λ_{0}, λ_{1} and λ_{2} are such that all the zeros of $u(z)$ defined by (8) lie in the half plane (9).

Remark 2 For $\alpha=0$, from inequality (12), we obtain for $|z| \geq 1$ and $R>1$,

$$
\begin{equation*}
|B[P](R z)| \leq\left|B\left[R^{n} z^{n}\right]\right| \max _{|z|=1}|P(z)| \tag{14}
\end{equation*}
$$

where $B \in B_{n}$, which contains inequality (10) as a special case.

By taking $\lambda_{0}=\lambda_{2}=0$ in (13) and noting that in this case all the zeros of $u(z)$ defined by (8) lie in the half-plane (9), we get:

Corollary 3 If $P \in P_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& \left|R P^{\prime}(R z)-\alpha r P^{\prime}(r z)\right| \\
& \leq n\left|R^{n}-\alpha r^{n}\right||z|^{n-1} \max _{|z|=1}|P(z)| \tag{15}
\end{align*}
$$

The result is sharp and equality in (15) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

If we divide the two sides of (15) by $R-r$ with $\alpha=1$ and let $R \rightarrow r$, we get for $r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
& \left|P^{\prime}(r z)+r z P^{\prime \prime}(r z)\right| \\
& \leq n^{2} r^{n-1}|z|^{n-1} \max _{|z|=1}|P(z)|
\end{aligned}
$$

The result is best possible.
By setting $\lambda_{1}=\lambda_{2}=0$ in (13), it follows that if $P \in P_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& |P(R z)-\alpha P(r z)| \tag{16}\\
& \leq\left|R^{n}-\alpha r^{n}\right||z|^{n} \max _{|z|=1}|P(z)|
\end{align*}
$$

Equality in (16) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.
Inequality (16) is equivalent to inequality (5) for $r=1$. For $\alpha=0$, inequality (16) includes inequality (2) as a special case. If we divide the two sides of the inequality (17) by $R-r$ with $\alpha=1$ and make $R \rightarrow r$, we get for $r \geq 1,|z| \geq 1$,

$$
\left|P^{\prime}(r z)\right| \leq n r^{n-1}|z|^{n-1} \max _{|z|=1}|P(z)|
$$

which, in particular, yields inequality (1) as a special case.

Next we use Theorem 1 to prove the following result.

Theorem 4 If $P \in P_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and for $|z| \geq 1$,

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.\quad+|1-\alpha|\left|\lambda_{0}\right|\right) \operatorname{Max}_{|z|=1}|P(z)| \tag{17}
\end{align*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$ and $B \in B_{n}$. The result is best possible and equality in (17) holds for $P(z)=$ $\lambda z^{n}, \lambda \neq 0$.

Remark 5 Theorem 4 includes some well known polynomial inequalities as special cases. For example, inequality (17) reduces to a result due to Q. I. Rahman (see [14, inequality (5.2)]) for $\alpha=0$.

If we choose $\lambda_{0}=\lambda_{2}=0$ in (17), we obtain:
Corollary 6 If $P \in P_{n}$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& \left|R P^{\prime}(R z)-\alpha r P^{\prime}(r z)\right|+\left|R Q^{\prime}(R z)-\alpha r Q^{\prime}(r z)\right| \\
& \quad \leq n\left|R^{n}-\alpha r^{n}\right||z|^{n-1} \max _{|z|=1}|P(z)| \tag{18}
\end{align*}
$$

Equality in (18) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.
If we divide the two sides of (18) by $R-r$ with $\alpha=1$ and let $R \rightarrow r$, we get:

Corollary 7 If $P \in P_{n}$, then for every α with $|\alpha| \leq$ $1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
& \left|P^{\prime}(r z)+r z P^{\prime \prime}(r z)\right|+\left|Q^{\prime}(r z)+r z Q^{\prime \prime}(r z)\right| \\
& \leq n^{2} r^{n-1}|z|^{n-1} \operatorname{Max}_{|z|=1}|P(z)|
\end{aligned}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.
For $\lambda_{1}=\lambda_{2}=0$ and $\alpha=1$, Theorem 4 includes a result due to A. Aziz and Rather [7] as a special case.

For the class of polynomials $P \in P_{n}$ having no zero in $|z|<1$, inequality (12) can be improved. In this direction, we present the following result which is a compact generalization of the inequalities (3), (4), (6) and (12).

Theorem 8 If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq \frac{\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|}{2} \max _{|z|=1}|P(z)| \tag{19}
\end{align*}
$$

where $B \in B_{n}$. The result is best possible and equality in (19) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.

Substituting for $B[P(z)]$ (19), we get for every real or complex α with $|\alpha| \leq 1, R>r \geq 1$ and for $|z| \geq 1$,

$$
\left|\sum_{j=0}^{2} \lambda_{j}\left(\frac{n z}{2}\right)^{j} \frac{\left(P^{(j)}(R z)-\alpha P^{(j)}(r z)\right)}{j!}\right|
$$

$$
\begin{align*}
\leq & \frac{1}{2}\left[\left|R^{n}-\alpha r^{n}\right|\left|\sum_{j=0}^{2} \lambda_{j}\left(\frac{n}{2}\right)^{j} C(n, j)\right||z|^{n}\right. \\
& \left.+|1-\alpha|\left|\lambda_{0}\right|\right] \max _{|z|=1}|P(z)| \tag{20}
\end{align*}
$$

where λ_{0}, λ_{1} and λ_{2} are such that all the zeros of $u(z)$ defined by (8) lie in the half-plane (9).

Remark 9 For $\alpha=0$, inequality (11) is a special case of inequality (20). If we choose $\lambda_{0}=\lambda_{2}=0$ in (20) and note that in this case all the zeros of $u(z)$ defined by (8) lie in the half-plane defined by (9), it follows that if $P(z) \neq 0$ in $|z|<1$, then for $R>r \geq$ 1 and $|z| \geq 1$,

$$
\begin{align*}
& \left|R P^{\prime}(R z)-\alpha r P^{\prime}(r z)\right| \\
& \leq n \frac{\left|R^{n}-\alpha r^{n}\right|}{2}|z|^{n-1} \max _{|z|=1}|P(z)| \tag{21}
\end{align*}
$$

Setting $\alpha=0$ in (21), we obtain for $|z| \geq 1$ and $R>1$,

$$
\left|P^{\prime}(R z)\right| \leq \frac{n}{2} R^{n-1}|z|^{n-1} \max _{|z|=1}|P(z)|
$$

which, in particular, gives inequality (3).
Next choosing $\lambda_{1}=\lambda_{2}=0$ in (7), we get

$$
\begin{align*}
& |P(R z)-\alpha P(r z)| \\
& \leq \frac{\left|R^{n}-\alpha r^{n}\right||z|^{n}+|1-\alpha|}{2} \max _{|z|=1}|P(z)| \tag{22}
\end{align*}
$$

for $R>r \geq 1$ and $|z| \geq 1$. The result is sharp and equality in (22) holds for $P(z)=a z^{n}+b,|a|=|b|=$ 1.

Inequality (22) is a compact generalization of the inequalities (3), (4) and (6).

A polynomial $P \in P_{n}$ is said to be self- inversive if $P(z)=Q(z)$ where $Q(z)=n^{n} \overline{P(1 / \bar{z})}$. It is known $[12,20]$ that if $P \in P_{n}$ is a self-inversive polynomial, then

$$
\begin{equation*}
\max _{|z|=1}\left|P^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|P(z)| \tag{23}
\end{equation*}
$$

Here we also establish the following result for selfinversive polynomials.

Theorem 10 If $P \in P_{n}$ is a self-inversive polynomial, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq \frac{\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|+|1-\alpha|\left|\lambda_{0}\right|}{2} \max _{|z|=1}|P(z)| \tag{24}
\end{align*}
$$

where $B \in B_{n}$. The result is best possible and equality in (24) holds for $P(z)=z^{n}+1$.

The following result immediately follows from of Theorem 10 by taking $\alpha=0$.

Corollary 11 If $P \in P_{n}$ is a self-inversive polynomial, then for $R>1$ and $|z| \geq 1$

$$
\begin{equation*}
|B[P](R z)| \leq \frac{\left|B\left[R^{n} z^{n}\right]\right|+\left|\lambda_{0}\right|}{2} \max _{|z|=1}|P(z)| \tag{25}
\end{equation*}
$$

where $B \in B_{n}$. The result is sharp as shown by the polynomial $P(z)=z^{n}+1$.

Corollary 11 includes a result due to Shah and Liman [21] as a special case.

Next choosing $\lambda_{1}=\lambda_{2}=0$ in (24), we immediately get

Corollary 12 If $P \in P_{n}$ is a self-inversive polynomial, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& |P(R z)-\alpha P(r z)| \\
& \leq \frac{\left|R^{n}-\alpha r^{n}\right||z|^{n}+|1-\alpha| \mid}{2} \max _{|z|=1}|P(z)| \tag{26}
\end{align*}
$$

The result is sharp and equality in (26) holds for $P(z)=a z^{n}+b,|a|=|b|=1$.

Inequality (26) contains inequality (23) as special case. If we divide the two sides of (26) by $R-r$ with $\alpha=1$ and let $R \rightarrow r$, we get

$$
\left|P^{\prime}(r z)\right| \leq \frac{n}{2} r^{n-1}|z|^{n-1} \max _{|z|=1}|P(z)|
$$

for $r \geq 1$ and $|z| \geq 1$.
Above inequality reduces to inequality (23) for $r=1$. Further for $\alpha=0$, inequality (26) gives

$$
\max _{|z|=R>1}|P(z)| \leq \frac{R^{n}+1}{2} \max _{|z|=1}|P(z)| .
$$

Setting $\lambda_{0}=\lambda_{1}=0$ in (24) and note that in this case all the zeros of $u(z)$ defined by (8) lie in the half-plane $|z|<|z-z / n|$, it follows that if $P \in P_{n}$ is a self-inversive polynomial, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
& \left|R^{2} P^{\prime \prime}(R z)-\alpha r^{2} P^{\prime \prime}(r z)\right| \\
& \leq \frac{n(n-1)}{2}\left|R^{n}-\alpha r^{n}\right||z|^{n-2} \max _{|z|=1}|P(z)|
\end{aligned}
$$

For $\alpha=0$, this inequality gives, for self-inversive polynomials $P \in P_{n}$,

$$
\left|P^{\prime \prime}(R z)\right| \leq \frac{n(n-1)}{2} R^{n-2}|z|^{n-2} \max _{|z|=1}|P(z)|
$$

for $R \geq 1$ and $|z| \geq 1$. The result is best possible and equality holds for $P(z)=z^{n}+1$.

Remark 13 Many other interesting results can be deduced from Theorem 10 in the same way as have been deduced from Theorem 1 and Theorem 4.

For the class of polynomials $P \in P_{n}$, having all their zeros in $|z| \leq 1$, we have

$$
\begin{equation*}
\min _{|z|=1}\left|P^{\prime}(z)\right| \geq n \min _{|z|=1}|P(z)| \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{|z|=R>1}|P(z)| \geq R^{n} \min _{|z|=1}|P(z)| \tag{28}
\end{equation*}
$$

Inequalities (27) and (28) are due to A. Aziz and Q. M. Dawood [3]. Both the results are sharp and equality in (27) and (28) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

As a compact generalization of inequalities (27) and (28), Rather [17] proved that if $\mathrm{P}(\mathrm{z})$ is a polynomial of degree n having all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \leq 1, R>1$ and $|z| \geq 1$,

$$
\begin{equation*}
|P(R z)-\alpha P(z)| \geq\left|R^{n}-\alpha\right| \min _{|z|=1}|P(z)| \tag{29}
\end{equation*}
$$

The result is sharp and equality in (29) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

Finally in this paper we present the following result.

Theorem 14 If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \geq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| \min _{|z|=1}|P(z)| \tag{30}
\end{align*}
$$

where $B \in B_{n}$.The result is best possible and equality in (30) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

Substituting for $B[P](z)$, we get, from (30), for every real or complex α with $|\alpha| \leq 1, R>r \geq 1$ and for $|z| \geq 1$,

$$
\geq \left\lvert\, \begin{align*}
& \left|\sum_{j=0}^{2} \lambda_{j}\left(\frac{n z}{2}\right)^{j} \frac{\left(P^{(j)}(R z)-\alpha P^{(j)}(r z)\right)}{j!}\right| \\
& \left|R^{n}-\alpha r^{n}\right||z|^{n} \times \\
& \left|\sum_{j=0}^{2} \lambda_{j}\left(\frac{n}{2}\right)^{j} C(n, j)\right| \min _{|z|=1}|P(z)| \tag{31}
\end{align*}\right.
$$

where λ_{0}, λ_{1} and λ_{2} are such that all the zeros of $u(z)$ defined by (8) lie in the half plane (9).

Remark 15 For $\alpha=0$, from inequality (30), we have for $|z| \geq 1$ and $R>1$,

$$
\begin{equation*}
|B[P](R z)| \geq\left|B\left[R^{n} z^{n}\right]\right| \min _{|z|=1}|P(z)| \tag{32}
\end{equation*}
$$

where $B \in B_{n}$.The result is best possible.

Taking $\lambda_{0}=\lambda_{2}=0$ in (31) and noting that all the zeros of $u(z)$ defined by (8) lie in the half plane (9), we get

Corollary 16 If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& \left|R P^{\prime}(R z)-\alpha r P^{\prime}(r z)\right| \tag{33}\\
& \geq n\left|R^{n}-\alpha r^{n}\right||z|^{n-1} \min _{|z|=1}|P(z)|
\end{align*}
$$

The result is sharp and extremal polynomial is $P(z)=$ $\lambda z^{n}, \lambda \neq 0$.

If we divide the two sides of (33) by $R-r$ with $\alpha=1$ and let $R \rightarrow r$, we get for $r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
& \left|P^{\prime}(r z)+r z P^{\prime \prime}(r z)\right| \\
& \geq n^{2} r^{n-1}|z|^{n-1} \min _{|z|=1}|P(z)|
\end{aligned}
$$

The result is best possible.
Next setting $\lambda_{1}=\lambda_{2}=0$ in (31), we obtain

Corollary 17 If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{align*}
& |P(R z)-\alpha P(r z)| \\
& \geq\left|R^{n}-\alpha r^{n}\right||z|^{n} \min _{|z|=1}|P(z)| \tag{34}
\end{align*}
$$

The result is best possible and equality in (34) holds for $P(z)=\lambda z^{n}, \lambda \neq 0$.

Inequality (34) includes inequality (29) as a special case.

2 Lemmas

For the proofs of these theorems, we need the following lemmas.

Lemma 18 If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then for $R>r \geq 1$ and $|z|=1$,

$$
|P(R z)|>|P(r z)|
$$

Proof: Since all the zeros of $P(z)$ lie in $|z| \leq 1$, we can write

$$
P(z)=C \prod_{j=1}^{n}\left(z-r_{j} e^{i \theta_{j}}\right)
$$

where $r_{j} \leq 1$. Now for $0 \leq \theta<2 \pi$ and $R \geq r \geq 1$, we have

$$
\begin{aligned}
& \left|\frac{R e^{i \theta}-r_{j} e^{i \theta_{j}}}{r e^{i \theta}-r_{j} e^{i \theta_{j}}}\right|^{2} \\
& =\left\{\frac{R^{2}+r_{j}^{2}-2 R r_{j} \operatorname{Cos}\left(\theta-\theta_{j}\right)}{r^{2}+r_{j}^{2}-2 r r_{j} \operatorname{Cos}\left(\theta-\theta_{j}\right)}\right\} \geq\left(\frac{R+r_{j}}{r+r_{j}}\right)^{2}
\end{aligned}
$$

if

$$
\frac{R^{2}+r_{j}^{2}-2 R r_{j} \cos \left(\theta-\theta_{j}\right)}{r^{2}+r_{j}^{2}-2 r r_{j} \cos \left(\theta-\theta_{j}\right)} \geq \frac{R^{2}+r_{j}^{2}-2 R r_{j}}{r^{2}+r_{j}^{2}-2 r r_{j}}
$$

or, if

$$
\begin{aligned}
& \left(R^{2}+r_{j}^{2}-2 R r_{j} \cos \left(\theta-\theta_{j}\right)\right)\left(r^{2}+r_{j}^{2}-2 r r_{j}\right) \\
& \geq\left(r^{2}+r_{j}^{2}-2 r r_{j} \cos \left(\theta-\theta_{j}\right)\right)\left(R^{2}+r_{j}^{2}-2 R r_{j}\right)
\end{aligned}
$$

that is ,if

$$
\begin{aligned}
& \left\{2 r r_{j}\left(R^{2}+r_{j}^{2}\right)-2 R r_{j}\left(r^{2}+r_{j}^{2}\right)\right\} \cos \left(\theta-\theta_{j}\right) \\
& \geq 2 R r_{j}\left(r^{2}+r_{j}^{2}\right)-2 r r_{j}\left(R^{2}+r_{j}^{2}\right)
\end{aligned}
$$

Equivalently,if

$$
(R-r)\left(R^{2}-r r_{j}\right) \cos \left(\theta-\theta_{j}\right) \geq-(R-r)\left(R^{2}-r r_{j}\right)
$$

That is, if

$$
\cos \left(\theta-\theta_{j}\right) \geq-1
$$

which is true. Hence for $0 \leq \theta<2 \pi$ and $R>r \geq 1$,

$$
\begin{aligned}
& \left|\frac{P\left(R e^{i \theta}\right)}{P\left(r e^{i \theta}\right)}\right|=\prod_{j=1}^{n}\left|\frac{R e^{i \theta}-r_{j} e^{i \theta_{j}}}{r e^{i \theta}-r_{j} e^{i \theta_{j}}}\right| \\
\geq & \left(\frac{R+r_{j}}{r+r_{j}}\right)^{n} \geq\left(\frac{R+1}{r+1}\right)^{n},
\end{aligned}
$$

which implies

$$
\begin{equation*}
\left|P\left(R e^{i \theta}\right)\right| \geq\left(\frac{R+1}{r+1}\right)^{n}\left|P\left(r e^{i \theta}\right)\right| \tag{35}
\end{equation*}
$$

for $0 \leq \theta<2 \pi$ and $R>r \geq 1$. Since $f\left(R e^{i \theta}\right) \neq 0$ for $R>r \geq 1$ and $R+1>r+1$, it follows from (35) that

$$
\left|P\left(R e^{i \theta}\right)\right|>\left(\frac{r+1}{R+1}\right)^{n}\left|P\left(R e^{i \theta}\right)\right| \geq\left|P\left(r e^{i \theta}\right)\right|
$$

for $0 \leq \theta<2 \pi$ and $R>r \geq 1$. This implies

$$
|P(R z)|>|P(r z)|
$$

for every $R>r \geq 1$ and $|z|=1$, which completes the proof of the Lemma 18.

The next lemma follows from Corollary 18.3 of [10, p. 86].

Lemma 19 If $P \in P_{n}$ and $P(z)$ has all its zeros in $|z| \leq 1$, then all the zeros of $B[P(z)]$ also lie in $|z| \leq$ 1.

Lemma 20 If $P \in P_{n}$ and $P(z)$ does not vanish in $|z|<1$, then for every real or complex number α with $|\alpha| \leq 1$ and $R>r \geq 1$,

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq|B[Q(R z)]-\alpha B[Q(r z)]| \tag{36}
\end{align*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$. The result is sharp and equality in (36) holds for $P(z)=z^{n}+1$.

Proof: Since the polynomial $P(z)$ has all its zeros in $|z| \geq 1$, therefore, for every real or complex number β with $|\beta|>1$, the polynomial $f(z)=P(z)-\beta Q(z)$ where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, has all its zeros in $|z| \leq$ 1. Applying Lemma 18 to the polynomial $f(z)$, we obtain for every $R>r \geq 1$,

$$
|f(r z)|<|f(R z)| \quad \text { for }|z|=1
$$

Using Rouche's theorem and noting that all the zeros of $f(R z)$ lie in $|z| \leq(1 / R)<1$, we conclude that the polynomial

$$
g(z)=f(R z)-\alpha f(r z)
$$

has all its zeros in $|z|<1$ for every real or complex number α with $|\alpha| \leq 1$. Applying Lemma 19 to the polynomial $g(z)$ and noting that B is a linear operator, it follows that all the zeros of polynomial

$$
\begin{align*}
T(z)= & B[g](z) \\
= & (B[P(R z)]-\alpha B[P(r z)]) \\
& -\beta(B[Q(R z)]-\alpha B[Q(r z)]) \tag{37}
\end{align*}
$$

lie in $|z|<1$ for all real or complex numbers α, β with $|\alpha| \leq 1,|\beta|>1$ and $R>r \geq 1$. This implies

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq|B[Q(R z)]-\alpha B[Q(r z)]| \tag{38}
\end{align*}
$$

for $|z| \geq 1$. If inequality (38) is not true, then there is a point $z=w$ with $|w| \geq 1$ such that

$$
\begin{aligned}
& \left|\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}\right| \\
& >\left|\{B[Q(R z)]-\alpha B[Q(r z)]\}_{z=w}\right|
\end{aligned}
$$

But all the zeros of $Q(z)$ lie in $|z| \leq 1$, therefore, it follows (as in case of $f(z)$) that all the zeros of $Q(R z)-\alpha Q(r z)$ lie in $|z|<1$. Hence by Lemma 19,
all the zeros of $B[Q(R z)]-\alpha B[Q(r z)]$ lie in $|z|<1$ so that $B[Q(R z)]-\alpha B[Q(r z)]_{z=w} \neq 0$. We take

$$
\beta=\frac{\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}}{\{B[Q(R z)]-\alpha B[Q(r z)]\}_{z=w}}
$$

then β is a well defined real or complex number with $|\beta|>1$ and with this choice of β, from (37), we obtain $T(w)=0$ where $|w| \geq 1$. This contradicts the fact that all the zeros of $T(z)$ lie in $|z|<1$. Thus

$$
\begin{aligned}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq|B[Q(R z)]-\alpha B[Q(r z)]|
\end{aligned}
$$

for every α with $|\alpha| \leq 1$ and $R>r \geq 1$. This proves Lemma 20.

3 Proofs of the Theorems

Proof of Theorem 1: Let $M=\max _{|z|=1}|P(z)|$, then

$$
|P(z)| \leq M \text { for }|z|=1
$$

By Rouche's theorem, it follows that all the zeros of polynomial $F(z)=P(z)-\lambda z^{n} M$ lie in $|z|<1$ for every real or complex number λ with $|\lambda|>1$. Therefore, by Lemma 18, we have for $R>r \geq 1$,

$$
|F(r z)|<|F(R z)| \text { for }|z|=1
$$

Since all the zeros of polynomial $F(R z)$ lie in $|z| \leq$ $(1 / R)<1$, applying Rouche's theorem again, we conclude that all the zeros of polynomial $G(z)=$ $F(R z)-\alpha F(r z)$ lie in $|z|<1$ for every real or complex α with $|\alpha| \leq 1$. Hence by Lemma 19, the polynomial

$$
\begin{align*}
L(z) & =B[G(z)] \\
& =B[F(R z)]-\alpha B[F(r z)] \\
& =(B[P(R z)]-\alpha B[P(r z)]) \\
& -\lambda\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M \tag{39}
\end{align*}
$$

has all its zeros in $|z|<1$ for every real or complex number λ with $|\lambda|>1$. This implies

$$
\begin{align*}
& |B[P(R z)]-\alpha B[P(r z)]| \\
& \leq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| M \tag{40}
\end{align*}
$$

for $|z| \geq 1$ and $R>r \geq 1$. If inequality (40) is not true, then there is a point $z=w$ with $|w| \geq 1$ such that

$$
\begin{aligned}
& \left|\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}\right| \\
& >\left|R^{n}-\alpha r^{n}\right|\left|\left\{B\left[z^{n}\right]\right\}_{z=w}\right| M
\end{aligned}
$$

for $|z| \geq 1$. Since $\left(B\left[z^{n}\right]\right)_{z=w} \neq 0$. we take

$$
\lambda=\frac{\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}}{\left(R^{n}-\alpha r^{n}\right)\left\{B\left[z^{n}\right]\right\}_{z=w}}
$$

so that λ is a well defined real or complex number with $|\lambda|>1$ and with this choice of λ, from (39), we get $L(w)=0$ where $|w| \geq 1$, which is clearly a contradictions to the fact that all the zeros of $L(z)$ lie in $|z|<1$. Thus for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
|B[P(R z)]-\alpha B[P(r z)]| \leq\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| M
$$

This completes the proof of Theorem 1.
Proof of Theorem 4: Let $M=\max _{|z|=1}|P(z)|$, then

$$
|P(z)| \leq M \text { for }|z|=1
$$

If μ is any real or complex number with $|\mu|>1$, then by Rouche's theorem, the polynomial

$$
F(z)=P(z)-\mu M
$$

does not vanish in $|z|<1$. Applying Lemma 20 to the polynomial $F(z)$ and noting the fact that B is a linear operator, it follows that for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$,

$$
\begin{aligned}
& |B[F(R z)]-\alpha B[F(r z)]| \\
& \leq|B[H(R z)]-\alpha B[H(r z)]|
\end{aligned}
$$

for $|z| \geq 1$ where

$$
\begin{aligned}
H(z) & =z^{n} \overline{F(1 / \bar{z})}=z^{n} \overline{P(1 / \bar{z})}-\bar{\mu} z^{n} M \\
& =Q(z)-\bar{\mu} z^{n} M
\end{aligned}
$$

Using the fact that $B[1]=\lambda_{0}$, we obtain

$$
\begin{align*}
& \left|B[P(R z)]-\alpha B[P(r z)]-\mu(1-\alpha) \lambda_{0} M\right| \\
& \leq\left|B[Q(R z)]-\alpha B[Q(r z)]-\bar{\mu}\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M\right| \tag{41}
\end{align*}
$$

for all real or complex numbers α, μ with $|\alpha| \leq$ $1,|\mu|>1, R>r \geq 1$ and $|z| \geq 1$. Now choosing the argument of μ such that

$$
\begin{aligned}
& \left|B[Q(R z)]-\alpha B[Q(r z)]-\bar{\mu}\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] M\right| \\
& =|\mu|\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| M \\
& \quad-|B[Q(R z)]-\alpha B[Q(r z)]|
\end{aligned}
$$

which is possible by Theorem 1, we get from (41), for $|\mu|>1$, and $|z| \geq 1$.

$$
\begin{aligned}
& |B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq|\mu|\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.\quad+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)|
\end{aligned}
$$

Letting $|\mu| \rightarrow 1$, we obtain

$$
\begin{aligned}
& |B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.\quad+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)| .
\end{aligned}
$$

This proves of Theorem 4.
Proof of Theorem 8: Lemma 20 and Theorem 4 together yields, for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
& 2|B[P(R z)]-\alpha B[P(r z)]| \\
& \leq|B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \\
& \leq\left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.\quad+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)|
\end{aligned}
$$

which is equivalent to (19) and this completes the proof of Theorem 8.
Proof of Theorem 10: By hypothesis $P \in P_{n}$ is a self-inversive polynomial, therefore, for all $z \in C$.
$|B[P(R z)]-\alpha B[P(r z)]|=|B[Q(R z)]-\alpha B[Q(r z)]|$.
Combining this with Theorem 4, we get for every real or complex number α with $|\alpha| \leq 1, R>r \geq 1$ and $|z| \geq 1$,

$$
\begin{aligned}
2 & |B[P(R z)]-\alpha B[P(r z)]| \\
= & |B[P(R z)]-\alpha B[P(r z)]|+|B[Q(R z)]-\alpha B[Q(r z)]| \\
\leq & \left(\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|\right. \\
& \left.+|1-\alpha|\left|\lambda_{0}\right|\right) \max _{|z|=1}|P(z)|
\end{aligned}
$$

which immediately leads to the desired result and this completes the proof of Theorem 10.
Proof of Theorem 14: Let $m=\min _{|z|=1}|P(z)|$, then

$$
m|z|^{n} \leq|P(z)| \text { for }|z|=1
$$

We first show that the polynomial $F(z)=P(z)-$ $\delta m z^{n}$ has all its zeros in $|z| \leq 1$ for every real or complex number δ with $|\delta|<1$. This is clear if $m=$ 0 . Henceforth we assume that all the zeros of $P(z)$ lie in $|z|<1$, then $m>0$ and it follows by Rouche's theorem that the polynomial $F(z)=P(z)-\beta m z^{n}$ has all its zeros in $|z|<1$ for every real or complex number δ with $|\delta|<1$. Applying Lemma 18 to the polynomial $F(z)$, we get

$$
|F(r z)|<|F(R z)|
$$

for $|z|=1$ and $R>r \geq 1$. Using Rouche's theorem, we conclude that all the zeros of polynomial

$$
G(z)=F(R z)-\alpha F(r z)
$$

lie in $|z|<1$ for every real or complex number α with $|\alpha| \leq 1$ and $R>r \geq 1$. Applying Lemma 19 to the polynomial $G(z)$ and noting that B is a linear operator, it follows that all the zeros of the polynomial

$$
\begin{align*}
& T(z)=B[G(z)]=B[F(R z)]-\alpha B[F(r z)] \\
& =B[P(R z)]-\alpha B[P(r z)]-\delta\left(R^{n}-\alpha r^{n}\right) B\left[z^{n}\right] \tag{42}
\end{align*}
$$

lie in $|z|<1$ for every real or complex number δ with $|\delta|<1$ and $R>r \geq 1$, which implies

$$
|B[P(R z)]-\alpha B[P(r z)]| \geq m\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right| .
$$

for $|z| \geq 1$. If above inequality is not true, then there is a point $z=w$ with $|w| \geq 1$ such that

$$
\begin{aligned}
& \left|\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}\right| \\
& <m\left|R^{n}-\alpha r^{n}\right|\left|\left\{B\left[z^{n}\right]\right\}_{z=w}\right| .
\end{aligned}
$$

Since all the zeros of $B\left[z^{n}\right]$ lie in $|z|<1$, therefore, $\left\{B\left[z^{n}\right]\right\}_{z=w} \neq 0$. We take

$$
\delta=\frac{\{B[P(R z)]-\alpha B[P(r z)]\}_{z=w}}{m\left(R^{n}-\alpha r^{n}\right)\left\{B\left[z^{n}\right]\right\}_{z=w}}
$$

then δ is well defined real or complex number with $|\delta|<1$ and with choice of δ, from (42) we get, $T(w)=0$ with $|w| \geq 1$, which contradicts the fact that all the zeros of $T(z)$ lie in $|z|<1$. Thus

$$
|B[P(R z)]-\alpha B[P(r z)]| \geq m\left|R^{n}-\alpha r^{n}\right|\left|B\left[z^{n}\right]\right|
$$

for every real or complex number α with $|\alpha| \leq 1$, $R>r \geq 1$ and $|z| \geq 1$. This completes the proof of Theorem 14.

Acknowledgements: The authors are thankful to the referee for his valuable suggestions.

References:

[1] N. C. Ankeny and T. J. Rivlin, On a Theorem of S.Bernstein, Pacific J. Math., 5(1955), 849-852.
[2] A. Aziz and Q. G. Mohammad, Simple proof of a theorem of Erdös-Lax, . Proc. Amer. Math. Soc, 80(1980), 119-122.
[3] A. Aziz and Q. M. Dawood, Inequalities for a polynomial and its derivative, Approx. Theory, 54(1988), 306-313.
[4] A. Aziz and N. A. Rather, Some Zygmund type L_{q} inequalities for polynomials, J.Math. Anal. Appl.,289(2004),14-29.
[5] A. Aziz and N. A. Rather, Some compact generalizations of Bernstein- type inequalities for polynomials, J.Math. Ineq. Appl.,7(2004),393403.
[6] A. Aziz and N. A. Rather, L_{p} inequalities for polynomials, Applied Mathematics., 2(2011), 321-328.
[7] A. Aziz and N. A. Rather, On an inequality of S.Bernstein and Gauss-Lucas Theorem, Analytic and Geometric inequalities and Their Application, (Th. M. Rassias and H. M. Sarivastava eds.) Kluwer Acad. Pub.,(1999),29-35.
[8] V. K. Jain, Inequalities for polynomials and its derivative,Proc. Indian Acad. Sci.(Math. Sci., for the polar ,110(2000), 137-146.
[9] P. D. Lax, Proof of a conjecture of P.Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509-513.
[10] M. Marden, Geometry of Polynomials, Math. Surveys, No. 3, Amer.Math. Soc., Providence, RI, 1985.
[11] G. V. Milovanovic D. S. Mitrinovic and Th.M.Rassias, Topics in polynomials: Extremal Properties, Inequalities and Zeros, World Scientific Publishing Co., Singapore,(1994).
[12] P. J. O'Hara and R. S. Rodriguez, Some properties of self-inversive polynomials, Proc. Amer. Math.,44(1974), 331-335.
[13] G. Pölya and G. Szegö, Problems and Theorems in analysis, Vol.I, Springer -Verlag, New York 1970.
[14] Q. I. Rahman, Functions of exponential type, Trans.Amer. Soc., 135(1969), 295-309.
[15] Q. I. Rahman and G. Schmeisser, Les inégalitiés de Markoff et de Bernstein, Les Presses de l'Université Montréal, Montréal, Québec 1983.
[16] Q. I. Rahman and G. Schmeisser, Analytic Theory of polynomials, Oxford University Press, New York, 2002.
[17] N. A. Rather, Extremal properties and location of the zeros of polynomials, Ph.D thesis, Kashmir University,(1998).
[18] N. A. Rather, Some integral inequalities for the polar derivative of a polynomials, Mathematica Balkanica ,22(2008), 207-216.
[19] N. A. Rather, Some integral inequalities for polynomials, Southeast Asian Bulletin of Mathematics, 32(2008), 1-8.
[20] E. B. Saff and T. Sheil-Small, Coefficient and integral mean estimates for algebraic and trigonometric polynomials with restricted zeros, J. London Math. Soc., (2) 9(1975), 16-22.
[21] W. M. Shah and A. Liman, An operator preserving inequalities between polynomials, J. inequal. Pure and Appl. Math., 9(2008),1-16.

